Chapitre G

La protection des circuits


Calcul du courant de court-circuit minimal présumé

De Guide de l'Installation Electrique
Version datée du 26 mai 2016 à 08:28 par Suniti (discussion | contributions) (Content Migration)

Accueil > La protection des circuits > Cas particuliers relatifs aux courants de court-circuit > Calcul du courant de court-circuit minimal présumé
Aller à :navigation, rechercher


Si le dispositif de protection de la canalisation n'assure que la protection contre les courts-circuits, il est nécessaire de s'assurer que le plus petit courant de court-circuit possible (Icc mini) entraîne son fonctionnement.

Dans le cas général, dans les circuits BT, un seul disjoncteur assure la protection d'une canalisation pour toute valeur du courant,du seuil de réglage de sa protection Long retard (ou protection thermique) jusqu’à son pouvoir de court-circuit.

On peut cependant être amené dans certaines configurations de circuit, à séparer les fonctions de protection contre les surcharges et protection contre les courts-circuits et à les confier à 2 appareils distincts.

Exemples de telles configurations

Les Figures G40 à G42 indiquent certaines configurations où les fonctions de protection contre les surcharges et protection contre les courts-circuits sont confiées à deux appareils distincts.

Fig. G40 – Circuit protégé par fusible aM
Fig. G41 – Circuit protégé par disjoncteur sans thermique (Compact type MA)

Les départs moteurs sont les circuits qui sont le plus couramment commandés et protégés par des appareillages séparés.

Le cas de la Figure G42a constitue une dérogation aux règles de protection. Il est notamment utilisé dans le cas d'une distribution par canalisations préfabriquées, rails d’éclairage, etc.

Fig. G42a – Le disjoncteur D assure la protection de court-circuit jusqu'au récepteur

Variateur de vitesse

Le tableau de la Figure G42b permet de connaître les fonctions de protection remplies par le variateur, et si nécessaire de les compléter par des dispositifs extérieurs au variateur tels que disjoncteur, relais de surcharge, et DDR.

Protection à assurer Protection généralement assurée par le variateur Protection extérieure
Surcharge câble Oui = (1) inutile si (1)
Surcharge moteur Oui = (2) inutile si (2)
Court-circuit aval Oui
Surcharge variateur Oui
Surtension Oui
Sous-tension Oui
Coupure phase Oui
Court-circuit amont disjoncteur (déclenchement court-circuit)
Défaut interne disjoncteur (déclenchement court-circuit et surcharge)
Défaut terre aval (contact indirect) (autoprotection) DDR ≥ 300 mA
Défaut contact direct DDR ≤ 30 mA
Fig. G42b – Protection à mettre en œuvre avec des variateurs de vitesse

Conditions à respecter

Il faut que le dispositif de protection vérifie :

  • Im < Iccmini pour une protection par disjoncteur,
  • Ia < Iscmini pour une protection par fusibles.

Le dispositif de protection contre les courts-circuits doit alors satisfaire aux deux conditions suivantes :

  • son pouvoir de coupure doit être supérieur au courant de court-circuit triphasé Icc en son point d’installation,
  • assurer l'élimination du courant minimum de court-circuit pouvant se développer dans le circuit protégé en un temps tc compatible avec les contraintes thermiques des conducteurs soit :

[math]\displaystyle{ tc \le \frac{k^2\, S^2}{Icc^2_{min}} (tc \lt 5s) }[/math]

La comparaison des courbes de fonctionnement (ou de fusion) des dispositifs de protection contre les courts-circuits et des courbes limites de contrainte thermique d'un conducteur montre que cette condition est vérifiée si :

  • Icc (min) > Im (ou Isd) ou Ii (Im : seuil de la protection contre les courants de courts-circuits, Ii : seuil de la protection Instantané) (cf. Fig. G43),
  • Icc (mini) > Ia pour la protection par fusibles, la valeur de courant Ia correspondant au croisement des courbes de protection et de contrainte admissible du câble

(cf. Fig. G44 et G45).

Fig. G43 – Protection par disjoncteur
Fig. G44 – Protection par fusible aM
Fig. G45 – Protection par fusible gl

Détermination pratique de la longueur Lmax

La méthode pour calculer la longueur maximale de la canalisation autorisée est présentée au Chapitre F paragraphes 6.2 et 7.2 dans le cadre de la protection des personnes contre les contacts indirects en schéma TN ou IT 2ème défaut.

Deux cas sont étudiés ci-après :

1 - Calcul de Lmax dans le cas d'un circuit triphasé sans neutre

Le courant minimum de court-circuit sur ce circuit est généré par un défaut apparaissant entre deux phases à l’extrémité du circuit (court-circuit biphasé) (cf. Fig. G46).

Fig. G46 – Définition de L pour un circuit triphasé sans neutre

En utilisant la « méthode conventionnelle », la tension au point P où est installée la protection est supposée égale à 80 % de la tension nominale pendant la durée du court-circuit, soit :

0,8 x U = Icc x Zd

  • Zd = Impédance de la boucle de défaut,
  • Icc = Courant de court-circuit,
  • U = tension nominale phase-phase.

Pour des câbles de section ≤ 120 mm2, on peut négliger leur réactance et écrire:

[math]\displaystyle{ Zd=\rho \frac{2L}{Sph} }[/math]

où :

  • ρ = résistivité du câble à la température moyenne de court-circuit,
  • Sph = section d'une phase en mm2,
  • L = longueur en m.

La condition pour que la protection du câble soit assurée Im (ou Isd) ≤ Isc avec Im (Isd) = seuil de la protection contre les courants de court-circuit du disjoncteur.

Cela conduit à [math]\displaystyle{ Im \le \frac{0.8 U}{Zd} }[/math] soit L [math]\displaystyle{ L \le \frac{0,8\ U\ Sph}{2 \rho Im} }[/math]

Dans cette formule U et ρ sont des constantes pour des conducteurs de même nature (cuivre ou aluminium) dans un réseau triphasé de distribution standard soit avec U = 400 V

ρ = 1,25 x 0,018 = 0.023 Ω.mm2,/m(2) (Cu)

d’où

[math]\displaystyle{ L_{max} = k \frac {Sph}{Im} }[/math]

avec

Lmax = Longueur maximale en mètre (pour le calcul de Lmax, la valeur retenue est la valeur du seuil Im + 20%, cas le plus défavorable).

k est défini dans le tableau ci-après en fonction de la section(1) pour Sph > 120 mm².

Section (mm²) ≤ 120 150 185 240 300
k (3) (pour 400 V) 5800 5040 4830 4640 4460

2 - Calcul de Lmax dans le cas d’un circuit triphasé avec neutre 400 V/230 V (ou monophasé 230 V)

Le courant minimum de court-circuit d’un tel circuit est généré par un défaut apparaissant entre une phase et le neutre à l’extrémité du circuit (court-circuit monophasé). Son calcul est similaire au calcul précédent mais

  • soit en utilisant les formules précédentes avec k calculé pour un réseau 230 V soit
Section (mm²) ≤ 120 150 185 240 300
k (pour 230 V) 3333 2898 2777 2668 2565
  • en fonction de la section Sn du conducteur neutre Sn = mSph

D’où les formules de calcul de la longueur maximale (pour une section ≤ 120 mm²)

  • Si Sn (section du neutre) = Sph

[math]\displaystyle{ L_{max} =\frac {3,333 Sph} {Im} }[/math]

  • Si Sn (section du neutre) = Sph/m

[math]\displaystyle{ L_{max} = 6,666\, \frac {Sph} {Im} \frac {1} {1 + m} }[/math]   où   [math]\displaystyle{ m = \frac {Sph} {Sn} }[/math]

Utilisation de tableaux pour déterminer Lmax

Le tableau de la Figure G47 indique les longueurs maximales Lmax (en mètres) des canalisations :

  • triphasées avec neutre sous 400 V, ou,
  • monophasées sous 230 V,

    protégées par disjoncteurs à usage général.

Dans les autres cas, appliquer aux longueurs les coefficients du Tableau G51.

Le calcul de la longueur Lmax est réalisé pour la valeur maximale de la tolérance sur le réglage du seuil de déclenchement de la protection Court retard ou magnétique. En général, la valeur de seuil Im (ou Isd) est donnée avec une précision +/- 20 %.

Pour la section de 50 mm2, les calculs sont effectués avec une section réelle de 47,5 mm2.

Les contenus spécifiques aux normes et réglementations françaises sont mis en évidence comme montré sur ce texte
Partager