Caractéristiques électriques des lampes
Lampes à incandescence
Lampes à incandescence à alimentation directe
En raison de la température très élevée du filament en cours de fonctionnement (jusqu'à 2500 °C), sa résistance varie dans de grandes proportions suivant que la lampe est éteinte ou allumée. La résistance à froid étant faible, il en résulte une pointe de courant à l'allumage pouvant atteindre 10 à 15 fois le courant nominal pendant quelques ms à quelques dizaines de ms.
Cette contrainte concerne aussi bien les lampes ordinaires que les lampes à halogène : elle impose de réduire le nombre maximal de lampes pouvant être alimentées par un même dispositif tel que télérupteur, contacteur modulaire ou relais pour canalisations préfabriquées.
Lampes à halogène à très basse tension
- Certaines lampes à halogène de faible puissance sont alimentées en TBT 12 ou 24 V, par l'intermédiaire d'un transformateur ou d'un convertisseur électronique.
Lors de la mise sous tension, au phénomène de variation de résistance du filament, s'ajoute le phénomène de magnétisation du transformateur. Le courant d'appel peut atteindre 50 à 75 fois le courant nominal pendant quelques ms. L'utilisation d'un gradateur placé sur l'alimentation réduit significativement cette contrainte.
- Les convertisseurs électroniques, à puissance égale, sont d’un coût d’achat plus élevé que les solutions avec transformateur. Ce handicap commercial est compensé par une plus grande facilité d’installation car leur faible dissipation thermique les rend aptes à une fixation sur un support inflammable.
Il existe maintenant de nouvelles lampes TBT à halogène avec un transformateur intégré dans leur culot. Elles peuvent être alimentées directement à partir du réseau BT et remplacer des lampes à incandescence normales sans aucune adaptation.
La variation de la luminosité
Elle peut être obtenue par variation de la tension appliquée à la lampe.
Cette variation de tension est réalisée le plus souvent par un dispositif du type gradateur à triac dont on fait varier l’angle d’amorçage dans la période de la tension réseau. La forme d’onde de la tension appliquée à la lampe est illustrée sur la Figure N38a. Cette technique dite « à retard d’allumage » ou « cut-on control » convient à l’alimentation des circuits résistifs ou inductifs. Une autre technique qui convient à l’alimentation des circuits capacitifs est développée avec des composants électroniques MOS ou IGBT. Elle réalise la variation de tension en bloquant le courant avant la fin de demi-période (cf. Fig. N38b) aussi est-elle dénommée « à avance d’extinction » ou « cut-off control ».
La mise sous tension progressive de la lampe permet également de réduire, voire d’éliminer la pointe de courant à l’allumage.
Comme le courant dans la lampe est découpé par l'électronique de commande, le taux de distorsion en courant est élevé et donc des courants harmoniques circulent sur le réseau.
Le courant harmonique 3 est prépondérant; la Figure N39 représente le pourcentage de courant d'harmonique 3 par rapport au courant fondamental (en fonction de la puissance).
Il est à noter qu'en pratique la puissance fournie à la lampe au moyen d'un gradateur peut varier dans une plage de 15 % à 85 % de la puissance maximale de la lampe.
Conformément à la norme CEI 61000-3-2 (NF EN 61000-3-2) définissant les limites pour les émissions de courant harmonique des appareils électriques ou électroniques dont le courant est ≤ 16 A par phase, les dispositions suivantes s'appliquent :
- pour les gradateurs autonomes d'alimentation de lampes à incandescence, ayant une puissance nominale ≤ 1 kW, aucune limite n'est imposée,
- dans les autres cas, ou pour des appareils d'éclairage à lampe à incandescence et avec un gradateur intégré ou un gradateur dans une enveloppe, l'intensité maximale de courant d'harmonique 3 permise est 2,3 A.
Tubes fluorescents à ballast magnétique
Les tubes fluorescents et les lampes à décharge nécessitent l'emploi d'un circuit de limitation de l'intensité de l'arc. La technologie la plus couramment utilisée est le ballast magnétique qui est une inductance placée en série avec l'ampoule elle-même (cf. Fig. N40).
Cette disposition est la plus couramment utilisée dans les applications domestiques où le nombre de tubes est limité. Aucune contrainte particulière n'est appliquée aux interrupteurs.
Les gradateurs ne sont pas compatibles avec les ballasts magnétiques : l'annulation de la tension pendant une fraction de période interrompt la décharge et, de ce fait, éteint complètement la lampe.
La fonction du starter est double : assurer le préchauffage des électrodes du tube, puis de générer une surtension pour l'amorçage du tube. Cette surtension est générée par l'ouverture d'un contact qui interrompt le courant circulant dans le ballast magnétique (contrôlée par un relais thermique).
Pendant le fonctionnement du starter (env.1 s), le courant absorbé par le luminaire est environ 2 fois le courant nominal.
Le courant absorbé par l'ensemble tube et ballast étant essentiellement inductif, le facteur de puissance est très faible (en moyenne entre 0,4 et 0,5). Dans les installations comportant un grand nombre de tubes, il est nécessaire de mettre en œuvre un dispositif de compensation pour améliorer le facteur de puissance.
Pour une installation d'éclairage importante, une compensation avec une batterie de condensateurs est une solution possible, mais le plus souvent cette compensation est intégrée au niveau de chaque luminaire suivant différents schémas (cf. Fig. N41 page suivante).
Un condensateur de compensation est dimensionné pour que le facteur de puissance global soit supérieur à 0,85. Dans le cas le plus fréquent de la compensation parallèle: en moyenne, sa capacité est de 1 µF pour 10 W de puissance active, pour tout type de lampe. Cette disposition ne permet pas le fonctionnement des variateurs de lumière de type gradateur.