Outils personnels

Les moteurs asynchrones

De Guide de l'Installation Electrique

Aller à : Navigation , rechercher
Flag of France.svg  Les contenus spécifiques aux normes et réglementations françaises sont mis en évidence par un texte orange ou par un filet orange comme celui dans la marge

Règles générales de conception d'une installation électrique
Raccordement au réseau de distribution publique MT
Raccordement au réseau de distribution publique BT
Bien choisir une architecture de distribution électrique
La distribution BT
Protection contre les chocs et incendies électriques
La protection des circuits
L’appareillage BT : fonctions et choix
La protection contre les surtensions
Efficacité Energétique de la Distribution Electrique
Compensation d’énergie réactive
Détection et atténuation des harmoniques
Les alimentations et récepteurs particuliers
Les installations photovoltaïques
La norme NF C 15-100 dans l’habitat
Recommandations pour l'amélioration de la CEM
Mesure

Introduction

Les moteurs asynchrones sont robustes et fiables, et très largement utilisés : 95% des moteurs installés à travers le monde sont asynchrones. La protection de ces moteurs est donc un sujet de grande importance dans de nombreuses applications.

Les moteurs asynchrones sont utilisés dans une large variété d'applications.

Voici quelques exemples de machines :

  • pompes centrifuges,
  • ventilateurs et des souffleries,
  • compresseurs,
  • concasseurs,
  • convoyeurs,
  • ascenseurs et grues,
  • ...

Les conséquences d'une panne moteur due à une mauvaise protection ou à un dysfonctionnement du circuit de contrôle peuvent être les suivantes :

pour les personnes

  • l'asphyxie due à l'obstruction des conduits d'air d'une ventilation,
  • l'électrocution due à la défaillance de l'isolation du moteur,
  • un accident dû au non-arrêt du moteur après une panne du circuit de contrôle ;

pour la machine et le processus

  • endommagement des accouplements d'arbres, des essieux, ou des courroies de transmission, ... en raison d'un décrochage du rotor,
  • perte de production,
  • délai de fabrication ;

pour le moteur lui-même

  • enroulements brûlés en raison d'un blocage du rotor,
  • coût des réparations,
  • coût de remplacement en cas de destruction.

Par conséquent, la sécurité des personnes et des biens, ainsi que les niveaux de fiabilité et de disponibilité, sont fortement dépendants du choix des équipements de protection.

En termes économiques, c'est le coût global des défauts qui doit être considéré. Ce coût augmente avec la taille du moteur et avec les difficultés d'accès et de remplacement. La perte de production est un autre facteur important et évident.

Les caractéristiques spécifiques de la performance motrice influencent les circuits d'alimentation requis pour le bon fonctionnement de l'équipement.

Le circuit d'alimentation de puissance d'un moteur présente des contraintes qui ne sont pas normalement rencontrées dans les autres circuits de distribution électrique. Elles sont dues aux caractéristiques particulières des moteurs directement alimentés par ce circuit, telles que :

  • le courant élevé de démarrage (voir Fig. N62), qui est essentiellement réactif, et peut donc être la cause d'importante chute de tension,
  • le nombre et la fréquence des démarrages qui peuvent être élevés.

L'importance des courants de démarrage signifie que les dispositifs de protection contre les surcharges moteur doivent avoir des caractéristiques de fonctionnement particulières afin d'éviter le déclenchement durant cette période de démarrage.

Fig. N62Caractéristiques du courant du démarrage direct d'un moteur asynchrone.